
 OPT^ CONTROL OF EECUTION 
COSTS FOR PORTFOLIOS 
The authors apply stochastic dynamic programming to derive trading strategies that 
minimize the expected cost of executing a portfolio of securities over a fixed time period. 
They test their strategies using real-world stock data. 

he rapid growth in equity investing, 
driven by the increasing popularity 
of mutnal fiinds and defined-contri- T hution retirement plans, has led to a 

rising concentration of assets among institutional 
money managers. A typical portfolio inaiiager 
now oversees a large portfolio of several hundred 
securities, with individual positions that might 
constitute a significant fraction of the security’s 
average daily volume. Both active managers and 
passive indexers must frequently rebalance their 
portfolios, to include new stock picks, to sell 
stocks that are out of favor, or to improve the 
tracking of a given index or benchmark, This 
generates sizeable orders across inany stocks that 
must be cxccuted within a relatively short time 
horizon, and that innst be executed together so 
as to maiiitain the portfolio’s risvreward charac- 
teristics. The  transaction costs associated with 
trading such “lists” of securities-often called ex- 
ecution costs-can he substantial. 

Execution costs have several components: ex- 
plicit costs such as coinmissions and bid/ask 
spreads, and costs that are harder to quantify, 
such as the oppmzmity  cmt of waiting and the price 
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impact from trading. @porhinity costs arise be- 
cause market prices are moving constantly and 
can move favorably or unfavorably without 
warning, generating unexpected profits or lost 
opportunities while a portfolio iiianager hesi- 
tates. Price impact is the typically unfavorable 
effect on prices that the act of trading creates, 
not unlike the turbulence that a ship’s wake gcn- 
erates. A security’s seller will, by the very act of 
selling, push down the security’s price, yielding 
lower proceeds from the sale, and siniilarly for 
tlie buyer. Moreover, the larger the order, tlie 
more hcavily the trade affects the price. For 
portfolios that turn over frequently or havc large 
positions to trade, these costs can significantly 
hinder the fund’s overall pcrfonnance.’ 

Reccnt studies show that institutional in- 
vestors often break up their larger trades into 
smaller “packages” that they execute over the 
course of several days.2-s There is a coinpelling 
ccononiic rationale for package trading. lrading 
is fundamentally a dynamic, patli-dependent, 
stochastic problem. Trading takes time, and the 
act of trading affccts price and price dynamics, 
which, in turn, affect execution costs. Control- 
ling the execution costs of large blocks of stock 
inust he accomplished by trading over a nuin- 
her of time periods. This was recognized by 
Dirnitris Bcrtsinias and Andrew Lo, who used 
stochastic dynamic-progrdinining techniques to 

‘I’his article was cditcd to CiSE hriuse style siid space IC- 
quircmciits. Far the full vcrsian, contact Andrew Lo a t  
thc addrcss listed for him on p. 23. 
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derive optimal or be.rt-execution strategies.‘ 
In this article, we extend the single-asset 

framework Bertsirnas and Lo outlined, to coli- 
struct hest-execution strategies for portfolio 
problems. Wc devcloped a specification for these 
problctns that is both einpirically plausible and 
coinputationally tractable to implcment. T h e  
closed-form solution provides insight into the 
naturc of trading portfolios. To quantify the po- 
tential cost savings of our strategies, we fit the 
parameters of our price-impact model using his- 
torical data on 25 large-cap New York Stock Ex- 
change (NYSE) stocks. 

The portfolio problem 
Specifically, wc solve this problem: 

given fixed blocks of shares in E stocks, 
5 = [it Sz . . . in]’, to be purchased within a fixed 
finite number of periods T, and 
given a set of pricc dynamics that capture 
price impact (that is, an individual trade’s ex- 
ecution price as a function of the shares 
traded and other “state” variables), 
find the optimal qzmm of trades (as a hnc-  
tion of the state variables) that minimizes 
the cxpccted cxecution costs. 

Because, as is wcll-known, the short-term de- 
inand curves for even the most actively traded 
equities arc not perfectly elastic,’ a market or- 
der at date 0 for the entire blockfis clearly not 
an optimal trading strategy. 

(we follow the cotninon convention that all 
vcctors are column vectors unless they are ex- 
plicitly transposed, and boldfacc Roman antl 
Greek letters denote vectors and matrices. For 
simplicity and without loss in generality, we con- 
sider the case of pmchasingfonly. SellingS and 
a combination of buying certain stocks and sell- 
ing others can easily he accommodated with the 
appropriate sign conventions [positive numbers 
for purchases, negative for sales].) 

Let r, = [.rIl, I*,, . . ., S ~ J  be the number ofsharcs 
of each stock acquired in period t at  prices p t  = 
{PI,, I]*,, ..., p.,], where t = 1, .._, T. We can ex- 
press the investor’s objective as 

subject to 

C S , = 5  (2) 
t= l  

whcre x, is a vector of state variablcs, E, is vector 
white noise, andff) and g(.) are the state equations 
or laws of motion that incorporate the price dy- 
naniics ofpt, the price impact of trading s,, and the 
dynamics of the state variables. Wc might also 
wish to impose additional constraints-for exatn- 
ple, a no-sales constraint, s, t 0-or othcr condi- 
tions that are placed on the portfolio manager by 
institutional restrictions, tax considerations, or 
other aspects of his or her investment process. 

(If a portfolio managcr is attempting to ac- 
quire a block of securities, selling the same se- 
curities during the acquisition pcriod is difficult 
to justify Lunless, of course, the manager has ex- 
tremely accuratc neptive information rcgard- 
ing the security’s price, which is somewhat in- 
consistent with thc original premise that he is a 
buiycr]. Indeed, in inany cases, it is illegal because 
it is considered a violation of the fidnciary trust 
that portfolio managers have to act in the hest 
interests of their investors.) 

T h e  portfolio casc contains several interesting 
feahlrCS that the single-stock analysis of Bertsi- 
mas and Lo and others did not capture. Perhaps 
the most inqiortant feature is the ahility to cap- 
hire cross-stock relations such as the cross-auto- 
correlations rcported t)y Andrew Lo and Craig 
MacI(inlay.* Price niovetnents in one stock can 
induce similar movements in the price of another, 
hecausc of cithcr common factors driving both 
or linked trading strategies-for cxatnple, pairs 
trading, index arbitragc, antl risk arbitrage. In 
such cases, the price impact of trading a portfolio 
might he larger than thc sum of the price impact 
of trading the individual stocks separately. 

Altcrnatively, if some stocks are ncgatively 
correlated (perhaps because of portfolio suhsti- 
tution effects) or if the portfolio to be executed 
includes both purchases and sales, thc portfo- 
lio execution cost might be lower than the sum 
of the individual stocks’ execution costs. This 
is because of a diversification effect in which 
trades of one stock lower the price impact of 
trades in anothcr. Whether execution costs are 
magnified or mollified in the portfolio case is, 
of course, an empirical issue that turns on the 
law of motion for the vector of prices and state 
variables. In either case, the portfolio setting 
clearly is considerably tnorc complex than the 
single-stock case. 



The state equations 
We now present a specification for the state 

equations that incorporates a multivariate price- 
impact fuiiction with cross-stock interactions. 

Let the execution priccp, he the sum of two 
components: 

where 3, is a “no-impact” price-the price that 
would prevail in the ahsence of any market im- 
pact-and 6, is the impact. A plausible and ob- 
servable proxy for the no-impact price is the 
midpoint of the hid/offer spread, although it can 
he arbitrary so long as the trade size s, does not 
affect it. For convenience, and to ensure non- 
negative prices, we model fit as vector-gcoinet- 
ric Brownian motion: 

where 2, is a diagonal matrix whose diagonal is a 
normal random vector zt with mean p z  and co- 
variance matrix 4. The exp(.) operator denotes 
the matrix exponential, which, in this case, re- 
duces to the element-wise exponential of the di- 
agonal entries in Z,. 

For 6, we set 

S, = P,(APts, + Bx,) , ( 5 )  

where PI = diag[jiJ and diag(.) is the diagonaliza- 
tion operator that maps its vector argument into a 
diagonal matrix with the vector as the diagonal. 
This spccification caphlres the impact of trading 
s, shares on the transaction prices pp It also im- 
plies that as a percentage of the no-impact price, 
j t ,  the price impact is a linear function of the dol- 
lar value of the trade and other state variables xt. 
The price impact’s form (see Equation 5 )  differs 
from the single-stock case in that the percentage 
price-impactfunction for each stock i is a linear 
function, A’$,, of the dollar values of the wades 
of all n stocks, not just of stock i. In the special 
case where A is diagonal, the portfolio problem 
reduces to n independent single-stock problems 
solved by Bertsimas and Lo? 

This specification of the dynamics ofp, has sev- 
eral advantages over other specifications (see the 
“Other specifications” sidebar). First, 3, is guar- 
anteed to be noiinegxtive, andp, is guaranteed to 
be nonnegative under mild restrictions on 6,. 
Second, separating the transaction price pt into 
the no-impact componentp, and impact coinpo- 
ncnt 6, makes the trade’s price impact temporary 
So, the impact affccts the current transaction 
price hut docs not affect future prices. Third, the 

percentage price impact increases linearly with 
the trade size, which is empirically  plausible.'^"'' 
Fonrth, Equation 3 implies a nattiral decomposi- 
tion of execution costs, decoupling market- 
microstructure effects from price dynamics, 
which is closely related to AndrC Peroldh notion 
of implementation shortfall.l2 Finally, we shall 
see in “The dynamic-programming solution” 
section that Equation 3 admits a closed-forin so- 
lution in which the best-execution strategy is a 
simple linear function of the state variables and 
in which the optimal-value function is quadratic. 

(Because Equation 3 implies that price inipact 
is temporary, affecting onlyp, and notfi,, the ob- 
jective function [see Equation 11 separates into 
two terms. The  first is the no-impact cost of ex- 
ecution and the second is the total impact cost. 
This decomposition is precisely the one Perold 
proposed in his definition of implenientation 
shortfall, but we apply it to executingi In par- 
ticular, the first term gives the “paper” return or 
execution cost, and the slim of the two terms 
gives the actual cost. So the second term is the 
implementation shortfall in executing i.) 

The  presence of the vector xt in Equation 5 
capturcs the potential influence of changing 
market conditions or private information about 
the securities on the price impact 6,. For exam- 
ple, xI might be the return on the S&P 500 in- 
dex, a common component in the price of most 
equities. We model xt as a vector with Y ele- 
ments, allowing for multiple sources of infor- 
mation to influence execution prices (or several 
lags of a single state variable). 

To complete our specification of the state 
equation, we must specify the dynamics of x,. 
For simplicity, we let 

xt = cx,. I + U*, (6) 

where 7, is vector white noise with mean 0 and 
covariance matrix C,. Because xt is a vector au- 
toregressive process with one lag (an “AR(l)”), 
we can capture varying degrees of predictahility 
in inforination or market conditions. The  ma- 
trices A and B measure the price impact’s sensi- 
tivity to trade size and market conditions. A 
must be positive definite; B is arbitrary; C must 
have eigenvalues less than unity in modulus (to 
ensure stationary of x,). 

The dynamic-programming solution 
We use a stochastic dynamic-programming al- 

gorithm to solve the optimal-execution problem 
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(see Equation 1). We denote by w, the vector of 
shares remaining to be bought (or sold) at  time t: 

WI =s 

w'7.+1 = 0 w,  = wt-i -si+, 

WI = s 
W?'+] = 0 Linear-percentage price impact 

As with all dynamic-programming solutions, 
we begin a t  the end. V, is the optimal value 
function a t  the end of onr trading horizon, pe- 
riod T. By definition, 

T h e  condition w , ~ ~  = 0 ensures that a11 S shares 
are cxecuted hy time T. Thc conipletc statement 
of thc problem is then 

Vr(j&,xT,w7.) = M~E,[p&] = ET[p;w.,.] 
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= [p,.( e,2 + AP, wl. + nz,. ,]'w,. 
subject to 

(7 )  

Because this is the last period and w, , ;~  i t l u s t  be 
sct to zero, thc remaining order wT must exe- 
cute. So, the optimal trade size s+= WT. Becausc 
&= pT, we can reexprcss Equation 7 as 

. . .  
state eq.at om" in tne ma'n article is oniy v 

ole spec fico: IS. For examp e, Dimctris Eer ' mas and Aii- 
drew Lo' pi ,se a natural multivariate extension of their "in- 
ear pr'ce ims I specificat on in wnich the state equation is 

pr = pr. I Art T Bx, T €1, (A) 
where A is a posit've clef nite n x n matrix, B ;s an arbitrary 11 x 
n l  matr x. x ,  is an rn vector of information variaoles, ana t, is 
n-vector wnite noise w'th meail 0 ana covariance m a t h  Xe 
As before, we assume Ilia1 x ,  follows d stationary AR(1) 
process. So, 

where C s an rn 4 m matrix with eigenvalLes all less than 
miry in moaulu:, and 11, IS rn-vector whte no se with meail 0 
and cokariance matrix X,, and which is ndependent of e.. 

Tnir spec'fication dffers I gnilicantly from the linear- 
percentage price impact in three bas'c respects. Perhaps the 
most important aifference 'I that EqLar on A imp.ies that the 
price 'mpact has a "permanent" elfecl on prices, oecatise of 
the random-walk nature of me price d) narnics. Also. the prcc 

tne same dol ar impact on a $1 stock as it w'll on a 31 00 
stocd. Finally, un err some ratner unnatural restrictions are 
placed on E, in EqLatiun A, p, CO&O lane on negative vaILes- 
clcar y an unrea istic prospect. 

01 course, Bertsimas and Lo consider Equat;on A primarily 
for analytic tractability, not oecause of supporting empirical 
er'dencc.' luevertheless, it is instructive to compare tnis speci- 

of mdiiy possi- state equation. In practice, the sute eqmtion must be erti- 
mateu empir'cally. For example, several empir cai stJd'es secin 
IO point to both permanent and temporary price impact in LS 
equity data.'" However, given the evcr.changing nature of 
f'nancia markets, 't is cruc'al to reestimate tne state equation 
for each app ;cat 011 .sing the most recent data sets avel.able. 
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VT(pT,xT , U T  ) - I I  

= e:,PTwT + w+RrA'PTw7. +x; .B'PrwT,  

which shows that the optimal value function is 
linear in xT and linear-quadratic in w?; By con- 
tinuing recursively in this fashion and applying 
Bellman's principle of optimality,13 we find that 
the optimal value function V,-, is 

VT-(. = iMinF.,-,[p+-p-(. + V,._(.,, 
lS.l-,.l 

( p ' / ' - k + 1 2 x 7 - k + l ,  wT-h+l) l  

= e:,D,,,e,, + e:Dr,,e, + eiE,x.,_, 
+ xk.,F,e,, t x;.,G,x,.-, + x ; . ~ , H , w , . ~ ,  

+ w.~ . . l~T . IxT .k  + elK,w>-, + 

+ w;-,N,w,-, 
(8) 

This yields the hest-execution strategy 

' T - k  = Az,(.xT-(.  + A w ( . w T - k  + A l , k e u  (9) 

(For explicit expressions for Q,k, D,;,, E&, Fk, Gk, 
Hk,J(., 4, Lk, ami Nk, and for Ax,,, 44 and Alp, 
see the Appendix posted at http://coniputer. 
org/cise.) T h e  recursion (see Equation 8) and 
best-execution strategy (see Equation 9) coin- 
pletely characterize the solution to our original 
problem, and yield the expected best-execution 
cost, Vpk, as a by-product. 

Linear price impact 
Under the law of motion (see Equations A and 

B in the sidebar), Bertsimas and Lo6 show that 
the portfolio problem (see Equation 1) can be 
solved with Bellman's equation, which yields the 
following hest-execution strategy, 

..;.-, = ( I - L 4 i ! l ' 4 0 w T ~ k  +-A,&IB;.ICx 1 -1 .,.. ,, 2 2 

(10) 
and optimal-value function, 

VT-(.(~T-,.~I,X?.~,,W.,~~~) 
= P; . - ( . -~WT_,  + W+-p4(.W~-k 

+x;.-kn(.wT-I + X ; - , C , X ~ - ( .  t (1, 

for k = 0, . . ., T- 1, where 

I A -A--AA;!,A' ,  
4 

1 I 

2 

A, = A (.- 

B ,  =-cB,-,(A;,-,)- A'+B',  n, = n' 

1 

4 
C,  = C ' C , ~ , C - - C ' U , ~ , ( A ~ , ~ l ) ' ~ ' B , . l C ,  C,, = O  

d,  = d , - ,  +I',[?J;.~iC,~lO1.~,], d , = O  

The best-execution strategy (scc Equation 10) 
is qualitatively similar to the optimnl single-stock 
strategy of Bertsimas and Lo.' However, it has 
one key difference: in the portfolio case, unless 
the matrix A is diagonal, the best-execution 
strategy for one stock will depend on the para- 
meters and state variables of all the other stocks. 
To see this, observe that the matrix coefficient 

tnultiplying w,_, in F.quation 10 will generally 
not he a diagonal matrix unless A is diagonal. Of 
course, if A is diagonal, trading in one stock has 
no price impact on any other stocks (see Equa- 
tion A in the sidebar). So, the portfolio problem 
essentially reduces to n independent single-stock 
problems. 

So, whether the portfolio best-execution cost 
is greater or less than the suni of the individual 
stocks' bcst-execution costs depends wholly on 
the values in A .  This is an empirical issue that  
we consider in dctail later. 

Imposing constraints 
Most practical applications will havc con- 

straints on the kind of execution strategies that 
instinitioilal investors can follow. For example, if 
a block of shares is to be purchased within Tpe- 
riods, selling the stock (luring these Tperiods is 
very difficult to jnstify even if such sales are war- 
ranted by the best-execution stratcgy. (Other 
common constraints include sector-balance, 
turnovcr, tax-motivated, and, in the portfolio 
case, tlollar-balance constraints. This last type of 
constraint-the portfolio's dollar value at  the end 
of trading mnst lie within some fixed interval-is 
one of thc most difficult to impwe. 'l'his is be- 
cause the constraint is a function of the entire 
vector of prices, which is stochastic. Rertsimas 
and Lo devised a probabilistic method of impos- 
ing such constraints.') So, in practice, buy pro- 
grams will almost always havc niinnegativity coil- 
straint.;, and sell programs will almost always 
have nonpositivity constrain 
arc often binding for bcst-cxccution strategies, 
particularly whcn the inforination variable has a 
large effect on price impact. 
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Why constraints are problematic 
Although there are well-known techniques for 

solving constrained-optimization prohleins in a 
static setting, corresponding techniques for dy- 
namic-optimization problems have not yet been 
developed. To see why this task is difficult, con- 
sider the simplest case of imposing nonnegativ- 
ity constraints S, 2 0 in the linear percentage 
price-impact model with only one asset (scalar 
equations). Without any constraints, the opti- 
mal-value function VT-, is quadratic in the state 
variable W T - ~ ,  so the Bellman equation can he 
easily solved in closed form. But if nonnegativity 
constraints are imposed, VTA becomes a piece- 
wise-quadratic function, with 3, pieces. 

To see how this arises, observe that fork = 0, 
the optimal control is s$ = wT and VT is a qua- 
dratic function of m,., In the next stage, k = l ,  we 
calculate the optimal control SF-] by minimizing 
a quadratic function of sT-l subject to the con- 
straints 0 <sT-, < wT.]. The solution is 

where 

This partitions the range of Wrq into three in- 
tervals; a different optimal control & is over 
each interval, and a continuous quadratic func- 
tion of wT_, is within each interval VT-,. 

The next stage, k = 2,  partitions each of these 
three intervals into another three intervals, each 
with a different optimal control sF-2, and so on. 
The  number of intervals grows exponentially 
with k. Therefore, even in this simple case, cal- 
culating& and VT-, exactly is only feasible for a 
very small number of periods T. (For example, 
when T =  20 there are 3'" = 3,486,784,401 inter- 
vals at  the last stage of the dynamic program!) 

A static-approximation method 
Faced with these difficulties, we propose an 

approximation method to address the optimal 
control problem with constraints. The dynamic- 
optimization algorithm we presented for the case 
without nonnegativity constraints gives the hest- 
exemtion strategy& (see Equation 9) as a func- 
tion of the state vector ( x ~ . ~ ,  wT-,,fiT-,) at time 
T - k. At time t = 1, the expected execution cost 
VI is 

where Q is a ( n  x n) diagonal matrix with 
entries 

R is an (n x n) symmetric matrix with elements 

and the matrix dot operator "." denotes an ele- 
ment-wise matrix niukiplication-that is, AeB E 

Equation 11 depends on the entire sequence 
of controls, {SI, sz, . . ., s.J, and the obsemed states 
at time t = 1, @,and X I .  In general, each control 
variable S, depends on the state at  time t. Under 
the static-approximation method, we will restrict 
the class of controls to those that s, depend onb 
on the state at time t = 1. That is, they depend 
only on prices Pland information vector x I .  

la+$. 
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Table 1. Ticker symbols, CUSIPs, company names, and closing prices 
on a randomly selected day in 1996 for 25 stocks that constitute 
the sample portfolio for the empirical implementation of the best- 
execution strateav. 

. ,  

NS0N.B OHNSON S 

1815410 ’ ‘PHILIP MORRIS . .. 

.7.1344810 ’ PEPSiCO 

Under this approximation, the problem reduces 
to this quadratic-optimizatioii problem: 

We solve Equation 12 at timet = 1 and find the 
“optimal” controls si,, , ., s;,, where the super- 
script indicates that this is the period-1 solution 
of Equation 12. However, we only implement the 
cnntrol s 1. After we observe the state vector in 

period t = 2,  we re-solve Equation 12 for time 
t = 2  aitdfiiidaiiewsetofcuntroIss:, ..., s$,but 
only implement the control sj .  We continue in 
this fashion, a t  each step solving a convex qua- 
dratic optimization problem that can he lxindletl 
efficiently using cointncrcially available pack- 
ages-for example, C-Plex or Minos. 

’l‘lie static-approxitnatioii inethod might not 
yield adequate approximations in all cases. EIow- 
ever, in inany of the examples wc explored, the 
technique performs admirably (for exainplc, the 
empirical analysis in the next section). Of  course, 
deriving accurate hounrls on the approximation 
emir in the must ititcresting cases is difficult be- 
cause the optimal solutions are unknown for 
these cases. We hope to explore the theoretical 
properties of the static-approxiination method 
in future research. 

An empirical example 
We now irnlilenicnt the hcst-cxcaition stratc- 

gies for a hypothetical stock portfolio. Specifically, 
we estimate the parameters of the linear-percent- 
age niodcl in “The state equations” section for 
each stock. We then constnict scvcral portfolio- 
rebalancing scenarios and compare the best-exe- 
cntion strategy with a “naive” strategy nf trading 
equal-size lots in each time period. 

The data 
Our empirical analysis draws on three data 

sources. T h e  primary source is a proprietary 
record oftradcs performed ovcr thc NYSE D O T  
system by the trading desk at  Invesment Tech- 
nologies Group (ITG) on every trading day he- 
tween 2 January and 3 l December 1996. Each 
trade is cataloged with this information: order- 
suhtnissioii datc and time, order cxccution date 
and time, whether it is a huy or sell order, size in 
shares, cxccution price, and order type (for exan- 
plc, market order or limit order). Wc chose the 
25 stocks that had the greatest numher ofmarkct 
orders over the year-long interval (see Table 1). 

Bccause of our sclection rule, our sample coli- 
sists of companies with large market capitaliza- 
tions. This ensures that we will have enough data 
to fit the niodcl and arrive a t  rcasonably accii- 
rate estimates of the parameters. I3ut such a satn- 
ple tends to exhibit a lower-thaii-average price 
impact hecause stocks that trade very frequently 
are, by definition, veiy liquid and have much 
smaller price impact. Such a bias in our satnpling 
procedure by no means invalidates our example's 
relevance. If we can demonstrate that our best- 
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Autosignal'" 
execution strategy is heneficial for 
highly liquid stocks, our approach's 
value is likely to be even greater for 
less liquid stocks, where price impact 
is significantly higher. 

T h e  ITG database provides valu- 
able trade information, bnt we must 
augment our analysis with NYSE 
TAQ data to extract quotcs prevailing 
at  the time of ITG trades. 'l'he TAQ 
database is a complete history of all 
trades and quotes on the NYSE, 
AMEX, and Nasdaq exchanges. 

Finally, we use S&P 500 tick data 
providcd by Tick Data Inc. to get in- 
traday levels for thc S&P 500 index 
during 1996. 

The estimation procedure 
Our estimation procedure consists of 

three steps. First, we estimate the para- 
meters 1~ and of the no-impact price 
dynamics (see Equation 4) for each 
stock. Given the geometric-Brownian- 
motion specification, we know that the 
continuously compounded returns zit 
arc independently and identically @ID) 
nornial random variates: 

for cacli stock z, where i = 1, ..., 25 
and N(,u,,cr;) is the nornial distribu- 
tion with mean ,U, and variance 0;. 
T h e  no-impact price is taken to bc 
the midpoint of thc prcvailing bid and 
offer prices at  time t (hencc the need 
for quotes): 

wherepi  andpfl are the hid and ask 
prices for stock i at  time t .  For each of 
our 25 stocks, we collect TAQ quotes 
a t  every half hour over the coursc of 
the 1996 trading year and calculate 
the midpoint to construct the no- 
impact prices,P,. Thus, the time in- 
dex, t ,  ranges over half hours, t = 1,2, 
, , ., Nh, where Nh is the total number 
of half hours in the 1996 trading year 
(approximately 250 days times 13 pc- 
riods per day). 

We then form log returns according 
to Equation 13 and discard any overii- 
ight returns to eliniiilate noii- 
synchronous trading effects. This 
givcs 11s a sample of 2,069 observations 
of Z, during the 1996 calendar year 
from which we can estimate pz and Z, 
in the standard way Table 2 summa- 
rizcs the results (to conserne spacc, we 
report estimates only for the first five 
stocks of Tihle 1). Thc  drift and 
volatility arc expressed in percent per 
year; we scale them up from the half- 
hourly units by assuming each of the 
250 trading days per year consists of 
13 half-hour trading intervals. The  
drift and volatility estimates are con- 
sistent with iiitnition and agree rea- 
sonably well with othcr data sources 
such as BARRA. 

Our second task is to cstiniatc the 
parameters of the market-information 
process in Equation 6. The variable X, 

capturcs the potential impact of 
changing market conditions or private 
inforination about the security. For 
example, wc could construct a short- 
term excess-returns model for this 
purpose. In our example, X, denotes 
the half-hourly returns on the S&P 
500 index, a cotninon factor that in- 
fluences thc prices of most securities. 
For this specification, the AR( 1) coef- 
ficients, C, and the covariance manix 
of the noise, I,,, reduce to scalar 
quantities, C and O , ~  Using the S&P 
500 tick data from 2 January to 3 1 
December 1996, we construct the rc- 
turns xt, where t i s  the same time in- 
dex used previously. We rescale the 
returns hy subtracting out the mean 
and dividing by standard deviation. 
This leaves ns with a zero-mean, unit- 
standard-devia tion process: 

Assuming I CI < 1, we can rewrite 
Eqnation I 5  as 

I, = CI,-, + 77, , 

The  maxirnnm likclihood estimator 
of the AR( 1) coefficient Cis 
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Table 2. Parameter estimates and correlations for the no-impact 
price process Ftfor five stocks, using 2,069 half-hourly observations 
from 2 january to 31 December 1996. The first and second rows 
give the annual drift and volatility parameters (percentlyear) 
scaled up from half-hourly estimates by assuming 250 trading days 
with 13 half-hour periods per day, The last five rows report t h e  cor- 
relation coefficients for the half-hourly returns of the five stocks. 

To avoid nonsyuchrmous trading effects, we dis- 
card all productsGr.f,, that straddle an overnight 
period in Equation 16's numerator. Similarly, we 
exclude overnight-rehirn terms from Equation 
16's denominator. T h e  constants, TI and Tz, arc 
the number of terms that are included in calcu- 
lating the numerator and dcnominapr and are 
1,902 and 2,078. Our estimate of Cis  0.0354. 
(Not surprisingly, the level of serial correlation 
in the S&P 500 index is quite low. If not, prof- 
itable trading strategies would hc possible that 
would quickly drive the predictability of index re- 
turns back to a low level.) 

Given C, the maximum-likelihood estimator 
for the standard deviation of 7, is 

~ 

Our estimate is 0.999. T h c  parameters Cand o,~  
fully characterize the AK(1) process that de- 
scribes the S&P 500 returns. 

Our final task is to estimate the parameters A 
and B of the price-impact cqnation (sec Equa- 
tion 5 ) .  We can recast the vector equation as 25 
separate linear regressions by rearranging terms: 

where a, and b, are the ith rows of A and B. This 
cxprcssion shows that the percentage price im- 
pact to the ith security is a linear function of the 

dollar volume we intend to trade in the ith secii- 
rity, the dollar volumes that we and others arc 
currently trading in the othcr 24 stocks, and the 
S&P 500 renirn over the preceding half hour. 

Obviously, trading in stock i should have a price 
impact onpi? But less obvious is the role that trad- 
ing in other stocks might play in dctcrinining the 
price impact on pit. Such cross-effects have sev- 
eral economic sources. One stock might be a close 
substitute for another, so a high price impact for 
one would imply the same for the othcr. Another 
motivation is that, in a market with sharply risiug 
(or falling) priccs and high volumc, the overall 
market impact will likely increase as liquidity 
providers demand higher premiums above postcd 
quotes for large market orders. 

To estimate A and B, we use a combination of 
TTG proprietary data, TAQ data, and SPX tick 
data. For each executed market order in a given 
stock i, the TTG datahase gives complete infor- 
mation ahout the inarket order except for the 
prevailing quote. We search the TAQ datahase 
to find the quote. As befove, we forin the no- 
impact price,fiit, as the average of the bid and of- 
fer (sec Equation 14) and then construct the de- 
pendent variables, 

a, 
i)ii 

for each trade. T h e  ITG database provides one 
indcpcndent variahle-namely, the dollar vol- 
nine of stock i: Fitsiv 

A difficulty arises in constructing other dollar- 
volume-related independent variables (that is, 
fit9? for i #I). The ITG data is too sparse to find 
nearby trades in time, so we must turn to the 
TAQ data to rcsolvc this observability problem. 
One possible solution is to use the nearest TAQ 
trade that occurs before an ITG market order. 
Unfortunately, the time alignment of the 'IAQ 
and ITG data sets can he imprecise because of 
recording lags by either party To reduce the im- 
pact of this type of error, wc define a proxy for 
the closest trade by forming a 30-second win- 
dow before each markct order and computing 
an average dollar volume within it. Although this 
averaging procedure tends to smooth the data 
and reduces its information content, it  ensures 
that temporal sequencing is not violated. 

Specifically, wc find all Nk trades in stockj that 
occur within that window. Each tradc is executed 
at  price pa, where k = 1, ..., Nk. Trades that arc 
executed above or a t  the midpoint of their 
quotes are classified as buys, and the rest as sells. 
Wc then compute an average dollar volume 
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within the window for stockj as 

Prices higher Using MPI-2: 275 pp. 532.50 paper 
outside US and set: 555 

Finally, for the S&P 500 rchirn, xi, we split the 
trading day into 13 half-hour intervals and con-  
puce the return io the half hour before the tradc. 

We now have a complete set of data with which 
to cstimate the parameters of our model's pricc- 
impact portion. We performed the regressions in 
SAS; they contaiucd no intcrcept term because 
the price impact should be zero if no stocks are 
being traded. Table 3 summarizes the first five oF 
the 25 rcgressions. For each regression, the tablc 
reports the parameter estimates for the 26 re- 
gressors-the lagged returns for the 25 stocks and 
the S&P 500 lagged return-and their t-statistics. 
R2 and the sample size appear at  the bottom of 
cach coluinn. (Wc performed diagnostics on the 
residuals to test for the presence of heteroskedas- 
ticity and autocorrelation. The  Durbin-Watson 
test indicated low levels of positive serial correla- 
tion, with statistics ranging from 1.12 to 1.69 for 
the 25 regrcssions. The  test of first and second 
moment specification indicated a very weak pres- 

http: / /mitpress.mit .edi  

ence of heteroskedasticity, because the p-values 
were, in general, very low.) 

lo develop some intuition for the coefficients, 
consider the estimated price impact for Ameri- 
can Home Products i n a  caused by trading in 
AHP, which is 4.97 x lo-'", according to Table 
3. If we traded a 100,000-share block of AI-IP at  
its beginning-of-year price of 1664.0625 with no 
impact, our total cost would be 100,000 x 
$64.0625 = $6,406,250. But according to Table 
3, the full-impact cost would be 

F. 

ioo ,ooo~( i ; ,  +a,) = i o ~ , o n n ~ ( $ 6 4 . o ~ z ~ + a , )  

ioo,ooox(p,  +s,)=$6,+26,647 

8, = p,(4.97 ~ 1 0 ~ ' "  x 6, x 100,000) = 0.203069 

which implics a price impact of approximately 
20 cents per share (ignoring the other factors in 
the regression). 'Ihis estimated price impact is 
unacceptably high; no professional trader would 
submit such a large order except in the most dcs- 
perate circumstances. 

Further inspection of the regression diagnos- 
tics shows that R2 ranges from 0.052 to 0.440 for 
the 25 regrcssions, indicating that the regressions 
have varying degrees of explanatory power. How- 
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Table 3. Coefficients of the unconstrained price-impact regressions 
for five stocks, based on market orders from 2 January to 31 Decem 
ber 1996. All coefficients have been multiplied by 10" except the 
SPX coefficients, which have been multiplied by lo5. The last tivo 
rows contain the sample size Tand R2 coefficients; the t-statistics 
appear in parentheses below the coefficients. 

cvcr, 30% (193 of 625) ofthe t-statistics are sig- 
nificant at  the 5% level, implying the importance 
offactors other than  own-stock trading in deter- 
niioing price impact. Also, 18 of tlie 25  own-stock 
price-impact term--that is, L ? , ~  (the ith diagonal 
entry of&arc statistically significant. These 
terms should be the most dominant in determin- 
ing price impact, and our regression confirms this 
conjechlre. Nevertheless, cross-stock effects are 
significant. 

C:onsidcr, for example, the AHP regression: 
while the own-price effect has a coefficient of 
4.97, coefficients for BLS and FNM arc 4.46 and 
-5.10. '1Bat these two cross-stock coefficients 
have opposite s i p s  underscores tlie portfolio ap- 
proach's iinportance for miniinizing execution 
costs. Because of significant cross-stock price- 
inqiact effects, the expected cost of executing a 
portfolio is not simply the s u i n  of the expected 
values of executing each security in isolation. 

Although some regressions have low explana- 
tory power, recall that we have proposed a rather 
naive specification for these regressions, omitting 
many otlicr variables that proprietaiy traders and 
other professional portfolio managers have at  
their disposal. But even with onr naive specifica- 
tion, we still achieve RZ's as high as 0.440 (for 
Merck, not shown in Table 3), which is quite sub- 
stantial, considering the data's high frequency. 

No-arbitrage constraints 
One additional aspect of the estimation proce- 

dure niust be considcrcd: whether or not the pa- 
rameter estimates yield a well-posed optimization 
problem (see Equations 1 and 2). In particular, for 
certain parameter values, the optimization prob- 
lctn is not convex, so the objectivc function can 
be made arbitrarily negative. The  econoinic in- 
terpretation for such circumstances is an (rbihuge 
oppormnity (also known as a "free lunch"), a sima- 
tion in which riskless profits can be manufachired 
ont of thin air. Ordinarily, this would be a wel- 
come state of aftairs for inveshllcnt professionals. 
In this case, the arbitrage is more likely a spuri- 
ous side effect of sampling variation in our para- 
meter estimates. 

l b  avoid these false-arhitragc opportnnities, a 
no-arbitrage restriction should be iniposcd on the 
estimation procedure. For the linear-pcrccntage 
price-impact model, we accomplish this by con- 
straining ho tha  anda .  R to be positivc definite 
matriccs. This, in turn, involves estiinating a con- 
strained linear-regression model. 'IBblc 4 rcports 
the results of such a procedure. 'Ihe two most sig- 
nificant differences hetween 'Tables 3 and 4 are 
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that the latter shows lower R*’S and the higher sig- 
nificance of the own-stock coefficients. The  for- 
mer is not surprising, because any constraint is 
hound to decrease the regression’s explanatory 
power, although thc decline is rather small for AN 
and DD. The  higher significance of own-stock 
coefficients follows from the definition of posi- 
tivc definitcncss-that is, X’AX > 0 for all vectors 
x. The diagonal elements of A are coefficients of 
squared terms of the x values in the matrix prod- 
uct x’Ax. Therefore, by making the squared terms 
sufficiently large relative to the cross-terms, we 
arrivc at  apositive definite matrix. 

As ‘Eible 4 shows, the cross-effects are also af- 
fected by the no-arbitrage consmint, highlighting 
it? significance in the portfolio context. For exam- 
ple, in NIP’S case, the cocfficients of BLS and 
FNM are now smaller (3.49 and 0.01) thaninTable 
3 (4.46 and -5.10), wlierc the no-arbitrage cow 
straint has not heen imposed. Howevcr, the coeffi- 
cients of MCD and WM‘r becoinc larger, in- 
creasing to 3.38 and 3.70 froin 2.56 a id  1.58 in 
‘kble 3. 

‘EThle 5 shows the ratio of the total sum of 
squared errors of the constrained regressinn to the 
iincoiistrained regression for all 25 stacks. The  in- 
crease in squared crrors is approximately 5% over- 
all, a rather modest increase that provides some 
support for imposing thc restriction, More im- 
portant, if thc no-arbitrage condition were not in -  
posed, the dyliarnic-optimization algorithms de- 
scribed earlier might yield nonsensical results. 

The  empirical results of Tables 3 to 5 suggest 
that the state equations nccessary for our dynatnic- 
optitnization algorithm can be estimated reason- 
ably accurately and that a portfolio approach to 
exemtion-cost control has significant benefits. 

Monte Carlo analysis 
Having calibrated the state cquation (see “The 

estimation procedure” section) for the linear per- 
centage case (sec “The statc eqmtions” section), 
we now investigate the performance of the hest- 
execution strategy through Montc Carlo simnula- 
tions. Specifically, we consider minimizing the ex- 
ecution costs of purchasing S shares of each of thc 
2 5  stocks in ’Table 1 over Tperiods. This occ~irs 
under the price dynamics (sec Equations 3 to 6) 
where A and B are the estimates A and B from 
the constrained regression (see the previous sec- 
tion) and C, pz, and I,, are as we cstimatcd in 
“The estimation procedure” scction. We assume 
that the baseline covariance matrix of thc no- 
imlxict p ice  is xz and that the initial no-impact 
prices are the prices in Table 1 (closing prices se- 

Table 4. Coefficients of the constrained price-impact re. 
gressions for five stocks, based on market orders from 
2 January to 31 December 1996. All coefficients have 
been multiplied by 10”except for the SPX coefficients, 
which have been multiplied by 10’. The last two rows 
contain sample size Tand R’coefficients; t-statistics are 
in Darentheses below the coefficients, 
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Table 5.  Ratios of the sum of squared residuals of the unconstrained and constrained price-impact regressions for 25 
stocks. bared on market orders from 2 lanuarv to 31 December 1996. 

Table 6. Monte Carlo simulations of optimal execution 
strategies with short-sales constraints for purchasing 3 
shares of all 25 stocks in the portfolio over Tperiods. 
Each row corresponds to an independent simulation 
experiment consisting of 10,000 IID replications. Costs 
are in cents per share. Tis the number of execution pe- 
riods. i is the amount of shares to purchase. k, i s  the 
scaling of the volatility. seis the average execution cost 
fo: the optimal strategy with no short-sale constraints. 

strategy with short-sale constraints. I I T  i s  the naive 
strategy’s average cost. Standard errors are in paren- 
theses below the main entries. 

I, i s  the average execution cost for the optimal 

lected from a random trading day in 1996). 
To gauge the sensitivity of execution costs to 

the model’s parameters, we vary the time hori- 
zon, T, the nuinher of shares traded, S (assumed 
the same for each stock), and the no-impact price 
volatility. We modify the pricc volatility by scal- 
ing the variances by a constant while keeping the 
correlation Struchlre fixed. The  results for 
10,000 replications are in Table 6, which reports 
the expected execution cost in cents per share. 
The  table also lists the standard error of the es- 
tiinate for the best-execution strategy ($7, the 
strategy under no-sales constraints computed 
through the static-approximation method ($3, 
and the naive strategy (SIT). 

Some general patterns enierge from the siniu- 
lations. First, as Tincreases, execution costs fall. 
Because we can spread the trading over more 
time periods, and because we have tlie flexibility 
to be more paticnt and wait for particularly op- 
portnne times to trade, expected costs decline. 
Second, as S decreases, cxecution costs also de- 
crease. With small-enough trade sizes, the ex- 
pected price impact is negative! This is because 
the price impact consists of two terms: the im- 
pact of shares traded, E,, which is quadratic in the 
share size, and the impact of information, which 
is linear in the information variable, .ep When we 
trade small-enough quantities, the qusdratic term 
is negligible and the information term dominates. 
Our strategy optimally uscs information so as to 
trade when trading is least expensive. For suffi- 
ciently significant pieces of information, trading 
can be quite profitable (not a uew insight to pro- 
prietary traders). Finally, increasing volatility 
seems to increase execution costs slightly. 

In all but two cases, the optimal strategy out- 
performs the naivc on average. In the two anorn- 
alous cases, the confidence interval of the differ- 
ence bctwecn the two strategies is so wide that 
this outcome could easily have occurred pmely 
by chance. If we increased the number of repli- 
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cations to  100,000, these two anonlalies would 
n o  doubt disappear. 

Another anotnalous result is t h a t  for some 
simulations, t h e  constraincd strategy's execotion 
cost is less than the uticonstraiticd strategy's cost. 
Although t h e  point estimates are indeed reversed 
in these cases, t h e  sampling variation is so great 
(consider their standard errors) that tnakitig ac- 
curate inferences about their relative magnimdes 
is difficult. Indeed, the differences arc not  stat is- 
tically significant. For  thc cases we eonsidcr, the 
no-sales constraint seems to have relatively lit- 
tle impact o n  the hest-execution strategy's per- 
formance, except in cases wi th  negative execu- 
t ion costs. To achieve negative execution costs, 
the no-sales constraints niust he violated, so im- 
posing them increases the costs dramatically. 

Of course, these conclusions are highly portfo- 
l io- and time-period-specific. Similar analyses 
should he coiiclucted case by case to determine the 
value added by the best-execution strategy in a 
given context. 

he remaining challenge i s  to integrate 
these best-execution suatcgies directly 
into the investment process, which re- T quires solving the portfolio optimiza- 

tion problem subject to transactions costs. This i s  
a formidable challenge t h a t  i s  both theoretically 
and cornputationally intensive, and we plan to turn 
to these problem in fuhlre research. 51 
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